vaxocentrism
/
vak "
soh -
sen "
trizm / [
analogy with "
ethnocentrism "]
A notional
disease said to afflict C programmers who persist in coding
according to certain assumptions that are valid (
especially
under Unix )
on {
VAXen }
but false elsewhere .
Among these are :
1 .
The assumption that dereferencing a null pointer is safe
because it is all bits 0 ,
and location 0 is readable and 0 .
Problem :
this may instead cause an illegal -
address trap on
non -
VAXen ,
and even on VAXen under OSes other than BSD Unix .
Usually this is an implicit assumption of sloppy code
(
forgetting to check the pointer before using it ),
rather than
deliberate exploitation of a misfeature .
2 .
The assumption that characters are signed .
3 .
The assumption that a pointer to any one type can freely be
cast into a pointer to any other type .
A stronger form of
this is the assumption that all pointers are the same size and
format ,
which means you don '
t have to worry about getting the
casts or types correct in calls .
Problem :
this fails on
word -
oriented machines or others with multiple pointer
formats .
4 .
The assumption that the parameters of a routine are stored
in memory ,
on a stack ,
contiguously ,
and in strictly ascending
or descending order .
Problem :
this fails on many RISC
architectures .
5 .
The assumption that pointer and integer types are the same
size ,
and that pointers can be stuffed into integer variables
(
and vice -
versa )
and drawn back out without being truncated or
mangled .
Problem :
this fails on segmented architectures or
word -
oriented machines with funny pointer formats .
6 .
The assumption that a data type of any size may begin at
any byte address in memory (
for example ,
that you can freely
construct and dereference a pointer to a word -
or
greater -
sized object at an odd char address ).
Problem :
this
fails on many (
especially RISC )
architectures better optimised
for {
HLL }
execution speed ,
and can cause an illegal address
fault or bus error .
7 .
The (
related )
assumption that there is no padding at the
end of types and that in an array you can thus step right from
the last byte of a previous component to the first byte of the
next one .
This is not only machine -
but compiler -
dependent .
8 .
The assumption that memory address space is globally flat
and that the array reference "
foo [-
1 ]"
is necessarily valid .
Problem :
this fails at 0 ,
or other places on segment -
addressed
machines like Intel chips (
yes ,
segmentation is universally
considered a {
brain -
damaged }
way to design machines (
see
{
moby }),
but that is a separate issue ).
9 .
The assumption that objects can be arbitrarily large with
no special considerations .
Problem :
this fails on segmented
architectures and under non -
virtual -
addressing environments .
10 .
The assumption that the stack can be as large as memory .
Problem :
this fails on segmented architectures or almost
anything else without virtual addressing and a paged stack .
11 .
The assumption that bits and addressable units within an
object are ordered in the same way and that this order is a
constant of nature .
Problem :
this fails on {
big -
endian }
machines .
12 .
The assumption that it is meaningful to compare pointers
to different objects not located within the same array ,
or to
objects of different types .
Problem :
the former fails on
segmented architectures ,
the latter on word -
oriented machines
or others with multiple pointer formats .
13 .
The assumption that an "
int "
is 32 bits ,
or (
nearly
equivalently )
the assumption that "
sizeof (
int ) ==
sizeof (
long )".
Problem :
this fails on {
PDP -
11s }, {
Intel
80286 }-
based systems and even on {
Intel 80386 }
and {
Motorola
68000 }
systems under some compilers .
14 .
The assumption that "
argv []"
is writable .
Problem :
this
fails in many embedded -
systems C environments and even under a
few flavours of Unix .
Note that a programmer can validly be accused of vaxocentrism
even if he or she has never seen a VAX .
Some of these
assumptions (
especially 2 --
5 )
were valid on the {
PDP -
11 },
the
original {
C }
machine ,
and became endemic years before the VAX .
The terms "
vaxocentricity "
and "
all -
the -
world "
s -
a -
VAX
syndrome '
have been used synonymously .
[{
Jargon File }]
vaxocentrism : /
vak `
soh ·
sen ´
trizm /,
n . [
analogy with ‘
ethnocentrism ’]
A notional disease said to afflict C programmers who persist in coding according to certain assumptions that are valid (
esp .
under Unix )
on VAXen but false elsewhere .
Among these are :
The assumption that dereferencing a null pointer is safe because it is all bits 0 , and location 0 is readable and 0 . Problem : this may instead cause an illegal -address trap on non -VAXen , and even on VAXen under OSes other than BSD Unix . Usually this is an implicit assumption of sloppy code (forgetting to check the pointer before using it ), rather than deliberate exploitation of a misfeature . The assumption that characters are signed . The assumption that a pointer to any one type can freely be cast into a pointer to any other type . A stronger form of this is the assumption that all pointers are the same size and format , which means you don 't have to worry about getting the casts or types correct in calls . Problem : this fails on word -oriented machines or others with multiple pointer formats .The assumption that the parameters of a routine are stored in memory , on a stack , contiguously , and in strictly ascending or descending order . Problem :this fails on many RISC architectures . The assumption that pointer and integer types are the same size , and that pointers can be stuffed into integer variables (and vice -versa ) and drawn back out without being truncated or mangled . Problem : this fails on segmented architectures or word -oriented machines with funny pointer formats .The assumption that a data type of any size may begin at any byte address in memory (for example , that you can freely construct and dereference a pointer to a word - or greater -sized object at an odd char address ). Problem : this fails on many (esp . RISC ) architectures better optimized for HLL execution speed , and can cause an illegal address fault or bus error . The (related ) assumption that there is no padding at the end of types and that in an array you can thus step right from the last byte of a previous component to the first byte of the next one . This is not only machine - but compiler -dependent . The assumption that memory address space is globally flat and that the array reference foo [-1 ] is necessarily valid .Problem : this fails at 0 , or other places on segment -addressed machines like Intel chips (yes , segmentation is universally considered a brain -damaged way to design machines (see moby ), but that is a separate issue ).The assumption that objects can be arbitrarily large with no special considerations . Problem : this fails on segmented architectures and under non -virtual -addressing environments . The assumption that the stack can be as large as memory . Problem : this fails on segmented architectures or almost anything else without virtual addressing and a paged stack . The assumption that bits and addressable units within an object are ordered in the same way and that this order is a constant of nature . Problem : this fails on big -endian machines . The assumption that it is meaningful to compare pointers to different objects not located within the same array , or to objects of different types . Problem :the former fails on segmented architectures , the latter on word -oriented machines or others with multiple pointer formats . The assumption that an int is 32 bits , or (nearly equivalently )the assumption that sizeof (int ) ==sizeof (long ) . Problem : this fails on PDP -11s , 286 -based systems and even on 386 and 68000 systems under some compilers (and on 64 -bit systems like the Alpha , of course ). The assumption that argv [] is writable . Problem : this fails in many embedded -systems C environments and even under a few flavors of Unix . Note that a programmer can validly be accused of vaxocentrism even if he or she has never seen a VAX .
Some of these assumptions (
esp .
2 --
5 )
were valid on the PDP -
11 ,
the original C machine ,
and became endemic years before the VAX .
The terms vaxocentricity and all -
the -
world '
s -
a -
VAX syndrome have been used synonymously .
安装中文字典英文字典查询工具!
中文字典英文字典工具:
复制到剪贴板
英文字典中文字典相关资料:
Education - William Paterson University ”RefNetBuilder: a platform for construction of integrated reference gene regulatory networks from expressed sequence tags ” BMC Bioinformatics 2011 Oct 18;12 Suppl 10:S20 doi: 10 1186 1471-2105-12-S10-S20 PMID:22166047
Steve Qins Curriculum Vitae - Emory University Barcelona BioMed Conference on Bayesian methods in Biostatistics and Bioinformatics, Barcelona, Spain, December 17-19, 2012 Towards the understanding of the three-dimensional genome organization, statistical challenges and opportunities for analyzing Hi-C data
CV Output - odin. mdacc. tmc. edu Associate Editor, BMC Medical Research Methodology, BioMed Central, 2011-present Associate Editor, The American Statistician, 2012-present Statistical Consultant, Journal of Immunotherapy and Precision Oncology, 2020-present Journal Reviewer Ad hoc reviewer, Bioinformatics, 2004 Ad hoc reviewer, Biometrics, 2006-present
www. csbj. org We proposed gdGSE, a novel computational framework for gene set enrichment analysis Unlike conventional methods that rely on continuous gene expression values, gdGSE employs discretized gene expression profiles to assess pathway activity
26918530. fs1. hubspotusercontent-eu1. net Group authorship (for manuscripts involving a collaboration group): if you would like the names of the individual members of a collaboration Group to be searchable through their individual PubMed records, please ensure that the title of the collaboration Group is included on the title page and in the submission system and also include collaborating author names as the last paragraph of the
A comparison of reference-based methods for correcting cell . . . SI fig S4: Estimated fractions of blood cell-subtype independent and cell-subtype specific mQTLs Using the Illumina 450k EWAS dataset over 47 healthy individuals and 3 blood cell subtypes (T-cells, B-cells and Monocytes), we provide an estimate of the relative fraction of cell-type independent and cell-type specific mQTLs, where cell-subtype independent refers to mQTLs with large absolute
A Space of Presentation Emphasis Techniques for Visualizing . . . BMC Bioinformatics BMC Bioinformatics IEEE Computer Society Press Graphics Press University of Technology Graz